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ROOTS OF POLYNOMIALS 
 

 The Java program SolvePolynomial.java solves polynomial equations of orders 2 through 8 

(inclusive). The methodologies used by the program are outlined herein. 

 

Order 2 (Quadratic) 

 The equation to solve is 

𝑥2 + 𝑎1𝑥 + 𝑎0 = 0.                                                                               (1) 

Thus, the Quadratic Formula is used, viz., 

𝑥 = −
1

2
𝑎1 ±

1

2
√𝑎1

2 − 4𝑎0 ,                                                                (2) 

which is implemented in class O2.java of the program. Test cases are: 

𝑥2 − 2𝑥 − 15 = 0          ⇒           𝑥 = −3 , 5 

       𝑥2 + 16𝑥 + 64 = 0          ⇒           𝑥 = −8 (twice) 

   𝑥2 − 2𝑥 + 5 = 0            ⇒           𝑥 = 1 ± 2𝑖 . 
Order 3 (Cubic) 

 The cubic polynomial equation 

𝑓(𝑥) = 𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0                                                   (3) 

has at least one real root 𝑧. This real root can be found via bisection, which method is described here. 
 

 
 

Figure 1. 𝑓(𝑚) and 𝑓(𝑟) of the same sign. Figure 2. 𝑓(𝑙) and 𝑓(𝑚) of the same sign. 
 

Start with two 𝑥–values 𝑥 = 𝑙 and 𝑥 = 𝑟 for which 𝑓(𝑙) and 𝑓(𝑟) differ in sign, as depicted in Figs. 1 and 2 above 

(the program assumes initially that 𝑙 = X_MIN = -100 and 𝑟 = X_MAX = 100, see class Polynomial.java). The 

𝑥–value 𝑚 is the average of 𝑙 and 𝑟, i.e., 𝑚 = 0.5(𝑙 + 𝑟). In Fig. 1, defining 𝑟 ← 𝑚 bounds the solution 𝑓(𝑥) = 0 

more closely; while in Fig. 2, 𝑙 ← 𝑚 bounds the solution more closely. Continuing this procedure, the real root 𝑧 

can be found to a specified tolerance. The program uses 𝑟 − 𝑙 = 1 × 10−7 as this tolerance (see the variable TOL 

in class Polynomial.java), and once this tolerance is reached, the real root is 𝑧 = 𝑚. 

 Having found 𝑧, the other two roots of eqn. (3) are found via polynomial division. Namely, solving 

𝑥2 + 𝑏1𝑥 + 𝑏0 = 0                                                                             (4) 

via the Quadratic Formula (2) gives the other two roots of eqn. (3), with 

𝑏1 = 𝑧 + 𝑎2     ,     𝑏0 = 𝑧2 + 𝑎2𝑧 + 𝑎1 . 

This procedure is implemented in class O3.java of the program. A test case is 

𝑥3 − 6𝑥2 + 13𝑥 − 20 = 0          ⇒           𝑥 = 4 , 1 ± 2𝑖 . 
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Order 4 (Quartic) 

We want to solve 

𝑓(𝑥) = 𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0,                                   (5) 

which can be accomplished by factoring 𝑓(𝑥) into two quadratics, viz., 

𝑓(𝑥) = (𝑥2 + 𝑐0𝑥 + 𝑐1)(𝑥2 + 𝑐2𝑥 + 𝑐3).                                        (6) 

Expanding eqn. (6) and comparing it to eqn. (5) gives that the coefficients 𝑐𝑖 satisfy 

                 𝑐0 + 𝑐2 = 𝑎3 

𝑐1 + 𝑐3 + 𝑐0𝑐2 = 𝑎2                                                                             (7) 

         𝑐0𝑐3 + 𝑐1𝑐2 = 𝑎1 

                         𝑐1𝑐3 = 𝑎0 , 

which is a nonlinear system of four equations for the coefficients of the quadratics. 

 The system (7) can be solved using Newton-Raphson iteration, which procedure is described here. First, 

define the residual vector 𝑟𝑖  , i.e., 

𝑟0 = 𝑐0 + 𝑐2 − 𝑎3                                                                                        
𝑟1 = 𝑐1 + 𝑐3 + 𝑐0𝑐2 − 𝑎2                                                                   (8) 

𝑟2 = 𝑐0𝑐3 + 𝑐1𝑐2 − 𝑎1                                                                                
𝑟3 = 𝑐1𝑐3 − 𝑎0                                                                                             

so that the desired solution is given by 𝑟𝑖 = 0. Now, let 𝑐𝑗
𝐼 be the currently best guess for the solution. An 

 

 

improved guess 𝑐𝑗
𝐼+1 can be obtained by looking at 

Fig. 3. Defining Δ𝑐𝑖 = 𝑐𝑖
𝐼+1 − 𝑐𝑖

𝐼, the figure shows 

that 

𝜕𝑟𝑖

𝜕𝑐𝑗
 |

 𝐜𝐼

≡ 𝑠𝑖𝑗(𝐜𝐼) =
𝑟𝑖(𝐜𝐼)

𝑐𝑗
𝐼 − 𝑐𝑗

𝐼+1 =
−𝑟𝑖(𝐜𝐼)

𝑐𝑗
𝐼+1 − 𝑐𝑗

𝐼 

or 

𝑠𝑖𝑗(𝐜𝐼) =
−𝑟𝑖(𝐜𝐼)

Δ𝑐𝑗
 .                                              (9) 

Rearranging eqn. (9), the improved guess for the 

solution 𝑐𝑖
𝐼+1 is obtained by solving the four-by-four 

system 

∑ 𝑠𝑖𝑗(𝐜𝐼)Δ𝑐𝑗

3

𝑗=0

= −𝑟𝑖(𝐜𝐼)                                (10) 

Figure 3. Schematic for Newton-Raphson iteration. for Δ𝑐𝑗  , and then by using 𝑐𝑖
𝐼+1 = 𝑐𝑖

𝐼 + Δ𝑐𝑖  . 
 

Differentiating eqns. (8), the entries of the matrix 𝑠𝑖𝑗 are 

𝑠𝑖𝑗 ≡
𝜕𝑟𝑖

𝜕𝑐𝑗
          ⇒           𝐬 = [ 

1 0
𝑐2 1

1 0
𝑐0 1

𝑐3 𝑐2

0 𝑐3

𝑐1 𝑐0

0 𝑐1

 ] .                     (11) 

In any case, this procedure can be continued until a specified tolerance is achieved. The program uses 

|Δ𝐜| = √∑(Δ𝑐𝑖)2

3

𝑖=0

 < 1 × 10−7. 
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Once the coefficients 𝑐𝑖 have been calculated, the four solutions to eqn. (5) are obtained by solving the 

two quadratics 𝑥2 + 𝑐0𝑥 + 𝑐1 = 0 and 𝑥2 + 𝑐2𝑥 + 𝑐3 = 0 with the Quadratic Formula. This methodology is 

implemented in class O4 of the program. 

 Finally, a test case is 

𝑥4 − 8𝑥3 + 42𝑥2 − 80𝑥 + 125 = 0          ⇒           𝑥 = 1 ± 2𝑖 , 3 ± 4𝑖. 
 

Order 5 (Quintic) 

The quintic polynomial equation 

𝑓(𝑥) = 𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0                                                        (12) 

has at least one real root 𝑧, which is found via bisection, as described above for the cubic polynomial equation. 

Having the a real root, polynomial division gives that the other four solutions to eqn. (12) are found by solving the 

quartic 

𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0 = 0 , 
where 

𝑏3 = 𝑧 + 𝑎4 ,     𝑏2 = 𝑧2 + 𝑎4𝑧 + 𝑎3 ,     𝑏1 = 𝑧3 + 𝑎4𝑧2 + 𝑎3𝑧 + 𝑎2 ,     𝑏0 = 𝑧4 + 𝑎4𝑧3 + 𝑎3𝑧2 + 𝑎2𝑧 + 𝑎1 . 

Finally, a test case is 

𝑥5 − 𝑥4 − 14𝑥3 + 214𝑥2 − 435𝑥 + 875 = 0          ⇒           𝑥 = −7 , 1 ± 2𝑖 , 3 ± 4𝑖 . 

This procedure is implemented by class O5 of the program. 

 

Order 6 (Sextic) 

To solve the sextic polynomial equation 

𝑓(𝑥) = 𝑥6 + 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0 ,                                       (13) 

factor it into three quadratics, i.e., 

𝑓(𝑥) = (𝑥2 + 𝑐0𝑥 + 𝑐1)(𝑥2 + 𝑐2𝑥 + 𝑐3)(𝑥2 + 𝑐4𝑥 + 𝑐5) .                                           (14) 

Expanding eqn. (14) and comparing the result to eqn. (13), one sees 

𝑐0 + 𝑐2 + 𝑐4 = 𝑎5                                                        
𝑐1 + 𝑐3 + 𝑐5 + 𝑐0𝑐2 + 𝑐0𝑐4 + 𝑐2𝑐4 = 𝑎4                                                        

𝑐0𝑐3 + 𝑐0𝑐5 + 𝑐1𝑐2 + 𝑐1𝑐4 + 𝑐2𝑐5 + 𝑐3𝑐4 + 𝑐0𝑐2𝑐4 = 𝑎3                                              (15) 

𝑐1𝑐3 + 𝑐1𝑐5 + 𝑐3𝑐5 + 𝑐0𝑐2𝑐5 + 𝑐0𝑐3𝑐4 + 𝑐1𝑐2𝑐4 = 𝑎2                                                        
𝑐0𝑐3𝑐5 + 𝑐1𝑐2𝑐5 + 𝑐1𝑐3𝑐4 = 𝑎1                                                        

𝑐1𝑐3𝑐5 = 𝑎0 ,                                                      

which are six nonlinear equations in the six unknowns 𝑐𝑖  . Equations (15) are then solved via Newton-Raphson 

iteration, as explained above for the quartic polynomial equation. Having the coefficients 𝑐𝑖  , the six solutions to 

eqn. (13) are found by solving the quadratics 𝑥2 + 𝑐0𝑥 + 𝑐1 = 0, 𝑥2 + 𝑐2𝑥 + 𝑐3 = 0 and 𝑥2 + 𝑐4𝑥 + 𝑐5 = 0. 

This method is implemented by class O6 of the SolvePolynomial program. A test case is 

𝑥6 − 18𝑥5 + 183𝑥4 − 988𝑥3 + 3487𝑥2 − 6130𝑥 + 7625 = 0          ⇒           𝑥 = 1 ± 2𝑖 , 3 ± 4𝑖 , 5 ± 6𝑖 . 
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Order 7 (Septic) 

To solve the septic polynomial equation 

𝑓(𝑥) = 𝑥7 + 𝑎6𝑥6 + 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0 ,                        (16) 

first find a real root 𝑧 via bisection, and then solve the sextic polynomial equation 

𝑓(𝑥) = 𝑥6 + 𝑏5𝑥5 + 𝑏4𝑥4 + 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0 = 0 

for the other six solutions to eqn. (16), where 

𝑏5 = 𝑧 + 𝑎6 ,                                                               𝑏4 = 𝑧2 + 𝑎6𝑧 + 𝑎5 ,                                                                       
𝑏3 = 𝑧3 + 𝑎6𝑧2 + 𝑎5𝑧 + 𝑎4 ,                                  𝑏2 = 𝑧4 + 𝑎6𝑧3 + 𝑎5𝑧2 + 𝑎4𝑧 + 𝑎3 ,                                          
𝑏1 = 𝑧5 + 𝑎6𝑧4 + 𝑎5𝑧3 + 𝑎4𝑧2 + 𝑎3𝑧 + 𝑎2 ,     𝑏0 = 𝑧6 + 𝑎6𝑧5 + 𝑎5𝑧4 + 𝑎4𝑧3 + 𝑎3𝑧2 + 𝑎2𝑧 + 𝑎1 . 

This is implemented in class O7 of the program. A test case is 

𝑥7 − 16𝑥6 + 147𝑥5 − 622𝑥4 + 1511𝑥3 + 844𝑥2 − 4635𝑥 + 15,250 = 0          ⇒ 

𝑥 = −2 , 1 ± 2𝑖 , 3 ± 4𝑖 , 5 ± 6𝑖 .                                                                                                                          
 

Order 8 (Octic) 

To solve the octic polynomial equation 

𝑓(𝑥) = 𝑥8 + 𝑎7𝑥7 + 𝑎6𝑥6 + 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0 ,          (17) 

factor it into four quadratics, i.e., 

𝑓(𝑥) = (𝑥2 + 𝑐0𝑥 + 𝑐1)(𝑥2 + 𝑐2𝑥 + 𝑐3)(𝑥2 + 𝑐4𝑥 + 𝑐5)(𝑥2 + 𝑐6𝑥 + 𝑐7) .              (18) 

Expanding eqn. (18) and comparing the result to eqn. (17), one sees that the coefficients 𝑐𝑖 obey 

𝑐0 + 𝑐2 + 𝑐4 + 𝑐6 = 𝑎7        
𝑐1 + 𝑐3 + 𝑐5 + 𝑐7 + 𝑐0𝑐2 + 𝑐0𝑐4 + 𝑐0𝑐6 + 𝑐2𝑐4 + 𝑐2𝑐6 + 𝑐4𝑐6 = 𝑎6        

𝑐0𝑐3 + 𝑐0𝑐5 + 𝑐0𝑐7 + 𝑐1𝑐2 + 𝑐1𝑐4 + 𝑐1𝑐6 + 𝑐2𝑐5 + 𝑐2𝑐7 + 𝑐3𝑐4 + 𝑐3𝑐6 + 𝑐4𝑐7 + 𝑐5𝑐6 +              
+𝑐0𝑐2𝑐4 + 𝑐0𝑐2𝑐6 + 𝑐0𝑐4𝑐6 + 𝑐2𝑐4𝑐6 = 𝑎5        

𝑐1𝑐3 + 𝑐1𝑐5 + 𝑐1𝑐7 + 𝑐3𝑐5 + 𝑐3𝑐7 + 𝑐5𝑐7 + 𝑐0𝑐2𝑐5 + 𝑐0𝑐2𝑐7 + 𝑐0𝑐3𝑐4 + 𝑐0𝑐3𝑐6 + 𝑐0𝑐4𝑐7 + 𝑐0𝑐5𝑐6 +    (19) 

+𝑐1𝑐2𝑐4 + 𝑐1𝑐2𝑐6 + 𝑐1𝑐4𝑐6 + 𝑐2𝑐4𝑐7 + 𝑐2𝑐5𝑐6 + 𝑐3𝑐4𝑐6 + 𝑐0𝑐2𝑐4𝑐6 = 𝑎4        
𝑐0𝑐3𝑐5 + 𝑐0𝑐3𝑐7 + 𝑐0𝑐5𝑐7 + 𝑐1𝑐2𝑐5 + 𝑐1𝑐2𝑐7 + 𝑐1𝑐3𝑐4 +              

+𝑐1𝑐3𝑐6 + 𝑐1𝑐4𝑐7 + 𝑐1𝑐5𝑐6 + 𝑐2𝑐5𝑐7 + 𝑐3𝑐4𝑐7 + 𝑐3𝑐5𝑐6 + 𝑐0𝑐2𝑐4𝑐7 + 𝑐0𝑐2𝑐5𝑐6 + 𝑐0𝑐3𝑐4𝑐6 + 𝑐1𝑐2𝑐4𝑐6 = 𝑎3        
𝑐1𝑐3𝑐5 + 𝑐1𝑐3𝑐7 + 𝑐1𝑐5𝑐7 + 𝑐3𝑐5𝑐7 +              

+𝑐0𝑐2𝑐5𝑐7 + 𝑐0𝑐3𝑐4𝑐7 + 𝑐0𝑐3𝑐5𝑐6 + 𝑐1𝑐2𝑐4𝑐7 + 𝑐1𝑐2𝑐5𝑐6 + 𝑐1𝑐3𝑐4𝑐6 = 𝑎2        
𝑐0𝑐3𝑐5𝑐7 + 𝑐1𝑐2𝑐5𝑐7 + 𝑐1𝑐3𝑐4𝑐7 + 𝑐1𝑐3𝑐5𝑐6 = 𝑎1        

𝑐1𝑐3𝑐5𝑐7 = 𝑎0 ,      

which are eight nonlinear equations in the eight unknowns 𝑐𝑖  . Equations (19) then are solved via Newton-

Raphson iteration as has been described above. Knowing the coefficients 𝑐𝑖 then, the eight solutions to eqn. (17) 

are obtained by solving the four quadratics 𝑥2 + 𝑐0𝑥 + 𝑐1 = 0 , 𝑥2 + 𝑐2𝑥 + 𝑐3 = 0 , 𝑥2 + 𝑐4𝑥 + 𝑐5 = 0 and 

𝑥2 + 𝑐6𝑥 + 𝑐7 = 0. This procedure is implemented in the class O8 of the program. Finally, a test case is 

𝑥8 − 32𝑥7 + 548𝑥6 − 5584𝑥5 + 37,998𝑥4 − 166,592𝑥3 + 487,476𝑥2 − 799,440𝑥 + 861,625 = 0          ⇒ 

𝑥 = 1 ± 2𝑖 , 3 ± 4𝑖 , 5 ± 6𝑖 , 7 ± 8𝑖 .                                                                                                                                            
 

Ad Infinitum 

 The above procedures can be continued indefinitely. Namely, any even-order polynomial equation can be 

factored into quadratics via Newton-Raphson iteration. Additionally, any odd-order polynomial equation can be 

solved by using bisection to find a real root, and the remaining roots found by solving an even-order polynomial 

equation. 


